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Consistency Conditions for the Integral Equations of 
Liquid Structures 

E. Lomba 2 and L. L. Lee, 3'4 

A thermodynamic consistency principle is established for the closure relations in 
integral equations that can yield accurate correlation functions as well as 
accurate thermodynamic properties. A brief tour d'horizon is given for existing 
consistency approaches. In addition to the common pressure consistency and 
the pressure--energy consistency, we introduce a third requirement based on 
the Gibbs-Duhem relation. We found that Gibbs-Duhem relation, mediated 
through the chemical potential, is instrumental in procuring accurate behavior 
of the bridge function and cavity function in the overlapping region (0 < r < a). 
We test the Lennard-Jones fluid over wide ranges of T* and p* (T* as low as 
0.72 and p* up to 0.90). For more than 15 state points we obtain excellent 
agreement in internal energy, pressure, and chemical potential. Comparison 
with Monte Carlo data on the bridge function and the radial distribution 
function also shows that the present approach is highly accurate. 

KEY WORDS: bridge function; chemical potential; closure relation; Gibbs- 
Duhem relation; integral equations; Lennard-Jones potential; pressure con- 
sistency; thermodynamic consistency. 

1. I N T R O D U C T I O N  

In teg ra l  e q u a t i o n  ( I E )  t e chn iques  have  been  used ex tens ive ly  to  d e t e r m i n e  

the  s t ruc tu re s  o f  l iqu ids  and  l iqu id  mix tu re s  [ 1 ] since the  la te  1950s a n d  

ear ly  1960s. M o s t  o f  the  IEs,  such  as the  P e r c u s - Y e v i c k  ( P Y )  [ 2 ]  a n d  
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the hypernetted-chain (HNC) [3] equations, are based on the Ornstein- 
Zernike (OZ) relation: 

?(r) - h ( r )  - C(r) = p  f dr' h(r') C ( I r -  r'l) (1) 

where h(r) is the total correlation function (tcf); C(r), the direct correlation 
function (dcf); y(r), the indirect correlation function (icf); and p, the 
number density. Knowledge of the tcf or, equivalently, the radial distribu- 
tion function (rdf), g ( r ) = l  +h(r), leads directly to the three thermo- 
dynamic quantities: pressure P (via the virial theorem), internal energy U, 
and isothermal compressibility Xr: 

f lP" -  1 p p -gf&r g0) (2) 

flU'=N p I dr flu(r) g(,') (3) 

(OflP"~ = l - p  ~ dr C(,') (4) 
X r - \  Op ) r  

To solve Eq. (1), one needs a second condition, i.e., a closure reNtion, that 
relates the correlation functions to the pair potential u(r). The closure 
relation can be given formally as 

In ),(r) ~ In g(r) + flu(r) = h(r) - C(r) + B(r) (5) 

B(r) is the bridge function, ),(r) = g(r) exp(flu(r)) is the cavity function, and 
fl=-l/kT is the reciprocal temperature (k=Boltzmann constant). The 
cluster diagram of B(r) is well-known [4]. However, to calculate "exactly" 
the bridge function according to the cluster integrals is mathematically a 
daunting task even for the simple hard-sphere fluid. Only a few low-density 
terms are known thereof. Approximate IEs make estimates of B(r), thus 
producing approximate rdf's. For example, HNC simply sets B(r) = 0 iden- 
tically. PY postulates 

Bey(r) ~ In[ 1 + y(r)] -- ?(r) (6) 

The rdf's from these approximate IEs, when substituted into the thermo- 
dynamic expressions Eqs. (2-4), do not yield consistent values of P, U, and 
Zr in the following sense. For example, the Helmholtz free energy A obeys 
the Gibbs-Helmholtz relation 

1 
d(flA) = Udfl-(flP) dV, fl=k--7" (7) 
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In order for A to be an exact differential, the cross partial derivatives 
should be equal: 

0uj I a/ jv (8) 

This is called the dU-dP consistency by Martynov and Vompe [5]. This 
was the basis of another important rule: the Hiroike consistency [6] from 
the early 1960s. In addition, the virial pressure should be differentiable to 
give the isothermal compressibility 

Op J r = x r  (9) 

This is called the dPv-dPc consistency [consistency between the virial 
theorem, Eq. (2) and the compressibility integral, Eq. (4)]. The HNC and 
PY theories, as approximations, do not satisfy either of these conditions. 
(HNC actually satisfies the Hiroike consistency! but not the dPv-dPc 
consistency). These inconsistencies then become a measure of the (lack of) 
soundness of the approximate theories. This prompts the questions: if we 
can formulate a closure relation [i.e., postulate a certain functional form 
for the bridge function B(r), either empirically or theoretically] that 
ensures the dU-dP and dPv-dPc consistencies, would this B(r) (a) be a 
better bridge function, compared to available "exact" machine simulation 
data on B(r)? or (b) give more accurate thermodynamic properties U, P, Zr, 
etc. (possibly rivaling simulation results) and more accurate correlation 
functions: g(r), C(r), and y(r)? Question a is a fundamental question, while 
question b is a practical question. Both need to the asked. 

In this paper, we set out to examine these questions by using not only 
the dPv-dPc consistency criteria, but also the Gibbs-Duhem relation: 
pdlL =dP at constant T. (dU-dP is not used for reasons stated below.) We 
compare with simulation data to answer question b. Of course, we are very 
interested in question a, being a more fundamental question, and examine 
a carefully. 

It is appropriate to cite here other "consistency" criteria that have 
been employed in the literature. (A) The minimization of the free energy 
scheme of Lado et al. [7]. [This produced the successful reference hyper- 
netted-chain (RHNC) equation,] (B) The free-energy variational principle 
--the existence and variations of an exact Helmholtz free energy functional 
[4, 8] yield all the definitions, the OZ relation, and the closure relations 
for the correlation functions as conditions of stationarity. The existence of 
this functional achieves the ultimate thermodynamic consistency in that all 
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thermodynamic quantities derived therefrom are mutually consistent. The 
problem is that such functional exists only formally (in terms of, e.g., 
coupling parameter integrals) that cannot at the moment be evaluated for 
general pair potentials. Approximate Helmholtz functionals do exist [such 
as the one for HNC, where B(r)=0]. But these, again, give approximate 
rdf's and, consequently, inconsistencies. (C) Pressure consistency condi- 
tions of Rogers and Young [9] and Zerah and Hansen [ 10]. These rules 
are similar to the dPv-dPc consistency mentioned above. Their contri- 
bution lies in a judicious splitting of the pair potentials into a reference 
part Ur and a long-range part us: u(r)=Ur(r)+u~(r). (D) Consistency in 
thermodynamic properties. Recently Vompe and Martynov [5, 11 ] have 
proposed a comprehensive framework for "enforcing" the thermodynamic 
property consistencies (between dPv-dPc and dU-dP) by imposing condi- 
tions on the temperature and density derivatives of the correlation func- 
tions. In a general sense, our present approach belongs to approach D, 
with the exceptions that (i) we adopt the efficient Verlet form for the bridge 
function, (ii) we do not explicitly require the evaluation of the derivatives 
Og(r)/Op and Og(r)/OT, and (iii) most importantly, we examine the dp-dP 
(Gibbs-Duhem) consistency, which was not tested before. (Thus we use the 
dPv-dPc and dlt-dP consistencies.) We note that for pure fluids, only two 
independent consistencies are sufficient since other conditions are derivable 
from the first two and are dependent on them. The dp-dP consistency has 
the important advantage that the chemical potential probes the short-range 
(0 ~< r <  tr) behavior of the cavity and bridge functions [ 12], while P and 
U only sample values of B(r) within a short interval, 0.8 < r/a < 1.3. Using 
U and P only will not likely give correctly B(r) for the overlapping region 
of r, especially for B(r ~ 0), where a number of zero-separation theorems 
must hold [ 13 ]. 

2. THEORETICAL APPROACH 

In earlier studies [ 12], we have shown that the bridge function formula 
proposed by Verlet [ 14] is a very powerful one for hard-sphere fluids, 

0.5~,(r) 2 0.5~*(r) '- 
B ( r ) = - l + 0 c y ( r ) '  or = l + a y * ( r ) '  w h e r e ) , * - y - f l u a  (10) 

where ~b and 0c are parameters and, for hard spheres, assume the values 1 
and 0.8, respectively. We refer to Eq. (10) as the VM (Verlet modified) 
closure. In this study, we test for the Lennard-Jones (LJ) fluid 

ULj(r) = 4e [ (--ffr)12 -- ( ~ )  6 ] (11) 
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We then allow the VM parameters ~ and a to vary with temperature and 
density (i.e., as functions of T and p). They should vary in such a way as 
to "enforce" the thermodynamic consistencies dPv-dPc and dl~-dP. For 
attractive potentials, Zerah-Hansen [10], Llano-Restrepo-Chapman 
[15], and Vompe-Martynov [11] have shown that a modified icf y* 
should be used in the closure Eq. (10) (namely, the icf stripped of its long- 
range attractive tail): ua(r) is the attractive part of the pair potential in the 
sense of Weeks-Chandler-Andersen (WCA) [16]. Ua( r )=-e ,  for all 
r <  rmi  n ,  and Ua(r)= U L j ( r ) ,  for all r>~ train, where rmi  n = 6V/2 O'. Thus the 
final closure form we adopt is the fraction with y* in Eq. (10). 

3. RESULTS OF CALCULATIONS 

We have carried out calculations for Lennard-Jones fluids under some 
15 conditions from T*=kT/e=0.72 to 1.556, and p*=pa3=0.4 to 0.9. 
Table I gives a list of T* and p*, together with some of the parameter 
values ~ and et determined in such a way that the dPv-dPc consistency is 
satisfied. We note that we used numerical differentation (Lagrange three- 
point or five-point formula) to get the derivatives: aflPV/ap with density 
grid size dp ~ 0.0005 or smaller. Usually more than one pair of values of ct 
and q~ will satisfy the dPv-dPc criterion! (They are correlated.) The d/~-dP 
consistency was then used to "fix" a particular pair of 0c and ~ such that 
the derivative OP/a/~ approaches the system density p (the Gibbs-Duhem 
relation). The chemical potential is evaluated with the closed and direct 
formula of Lee [ 12 ]: 

f [ h(r)7(r)] S* fig' = p dr B(r) + y(r) - h(r) + h(r) B(r) -~ - (12) 

where the star integral S* is given by 

[ h(r) ~'* B(y*)] ( S*-p f dr Ly,(r) fo dy* 13) 

The closure relation, Eq. (I0), is used in Eq. (13). 
The thermodynamic properties are displayed in Table I and compared 

with Monte Carlo (MC) data [ 17] as well as the acurate equation of state 
(EOS) for LJ fluids of Nicolas et al. [18]. The configurational internal 
energy is well reproduced by the consistent approach proposed here (U is 
usually very easy to reproduce by most closures). The consistent pressures 
(from dPv = dPc) are also very accurate for the data points tested. We now 
have PV~ pc due to the consistency requirement. Note that the density 
reaches as high as 0.9 and the temperature as low as 0.72. For the isotherm 
T * =  0.75, we have also included comparison with the HMSA method of 

840/17/3-10 
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Table I. 

Lomba and Lee 

Thermodynamic Properties from Consistent Integral Equations for 
Lennard-Jones Fluids 

T* p* 

pelp -pu'/N 

~b ct This work EOS" This work EOS ° 

1.556 0.4 0.5356 1.0 

1.556 0.6 1.00 1.055 

1.556 0.8 1.23 1.00 

1.5 0.4 0.5356 1.0 

1.5 0.6 1.00 1.055 

1.5 0.7 1.12 1.0 

1.5 0.8 1.00 0.815 

1.5 0.9 1.00 0.76 

1.0 0.8 1.00 0.815 

0.81 0.8 1.00 0.79 

0.75 0.84 - -  0.6 

0.75 0.85 - -  0.6 

0.75 0.86 - -  0.6 

0.75 0.87 - -  0.6 

0.72 0.85 1.00 0.731 

a From the equation o'f state of Ref. 18. 
~' In parentheses from MC of Ref. 17. 
"F rom MC of Ref. 20. 
d From HMSA of Zerah-Hansen [ 10]. 

From RHNC of Lado [7].  

0.517 0.507 1.707 1.704 

(0.553)J' (1.724)b 

0.956 0.883 2.517 2.523 

(0.955} (2.526) 

2.77 2.804 3.17 3.25 

(2.768) (3.273) 

0.453 0.447 1.784 1.781 

(0.41) 

0.853 0.791 2.614 2.635 

1.51 1.479 3.04 3.046 

2.71 2.72 3.404 3.4 

4.56 4.72 3.66 3.657 

1.4 1.309 5.502 5.522 

(1.53) 

0.375 0.204 7.0 7.027 

(0.06) 

0.445 0.441 " 8.031 8.032 ¢ 

0.464 'l 8.029 a 

0.449" 8.028 ~' 

0.693 0.692' 8.114 8.112" 

0.712 '/ 8.113 a 

0.705" 8.109" 

0.957 0.952" 8.196 8.179" 

0.976 a 8.195 d 

0.977 t' 8.188" 

1.237 1.244" 8.276 8.256" 

1.256 a 8.275 a 

1.268 t" 8.265" 

0.671 0.490 u 8.454 8.431" 

(0.36) h 

r 
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Fig. 1. The configurational chemical potential /t' of a Lennard-  
Jones fluid as a function of density at three isotherms: T*=0.928,  
1.15, and 1.556. EOS (lines) are from Nicolas et aL [18],  MC, 
(circles) from [ 17]. The self-consistent results (triangles) are from the 
closure Eq.(10) and Eqs. (12) and (13). 
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Fig. 2. The bridge function of a Lennard-Jones fluid at T * = 0 . 7 2  
and p*=0 .85 .  MC (circles) are from Llano-Restrepo et al. [15].  
The self-consistent results (line) are form Eq. (10) and the dPv--dPc 
and dlt-dP consistent relations. Note that at r = 0 ,  MC gives 
B(0) = -25.7 ,  while consistency gives B ( 0 ) =  -25.3.  
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Zerah-Hansen and with the RHNC method of Lado. To do the structures 
at T*=0.75 (and p*~0.86)  we found e,-~0.6, and we optimized ~ as 
~b=aexp(-r/r) ,  where a and r/ were parameters to be determined by 
consistency conditions. These measures were used only for the isotherm 
T* =0.75. In all cases, the thermodynamic properties are very accurately 
given by the present consistent approach. A special comparison with the 
chemical potential is presented in Fig. 1. We see that the chemical potential 
is closely given by Eq. (12), except at higher densities (p* >0.7) for the 
low-temperature isotherms. We surmise two possible sources of errors: 
(i) the formula, Eq. (13), is not valid for high densities; and/or (ii) the 
closure, Eq. (10), is not robust enough. We now put more onus on source ii 
(for reasons already stated in Ref. 12). 

To test the consistent bridge functions produced from Eq. (10), we 
plot B(r) for the state p* = 0.85 and T* = 0.72 in Fig. 2 with the MC data 
of Llano-Restrepo et al. [ 15]. It is seen that excellent reproduction of the 
MC B(r) is achieved from small r ~ 0 to longer ranges. This agreement by 
far exceeds that attained by Vompe-Martynov [ 11 ] [refer to their Figs. 6 
and 7, 1994 where B(0) was much overstimated]. To test the correlation 
functions further, we compared the consistent rdf with the molecular 
dynamics (MD) data on LJ fluids from Verlet [19] at T* =0.72 and 
p* =0.85 in Fig. 3. Excellent agreement is in evidence. This is not an 
isolated instance. Comparison at other states where MC data are available 
shows a similarly good agreement. 

0 
0 

T .  = 0 . 7 2 .  p *  = 0.85 

_i 

- -  This Work 
, o M D ( V e r l e t )  

2 3 4 

r+ 

Fig. 3. The radial distribution function of a Lennard-Jones fluid at 
T * =  0.72 and p * =  0.85. MD (molecular dynamics results in circles) 
are from Verlet [19]. The self-consistent results (line) are from 
Eq. (10) and the dPv-dPc and dla-dP consistent relations. 
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4. CONCLUSIONS 

In this work, we explore the possibility of employing the macroscopic 
thermodynamic consistencies dPv-dPc and dlz-dP to determine the liquid 
structures of Lennard-Jones fluids. We use a flexible and robust closure: 
the Verlet form, Eq. (10), for this task. The goal is to obtain nearly "exact" 
correlation functions through the integral equation method. Comparison 
with conventional consistency approach shows that the present approach 
gives (i) accurate small-r behavior for correlation functions not achieved by 
other methods; (ii) accurate and consistent pressures (pv = p c )  and energy 
values; and (iii) prediction of values of chemical potential [which depends 
to a large extent on the overlapping region (r* < 1 ) of the correlation func- 
tions] accurate up to p* ~0.7. 

On different thermodynamic constraints, pressure consistency 
(dPv-dPc) is relative straightforward to employ. The consistency (dU-dP) 
turns out to be difficult to enforce under the present setup [Eqs. (8) and 
(I0)].  We conjecture that it will be difficult to enfoce for any trial closures 
that might be employed simply because U and P derive most their con- 
tributions from the rdf at the same contact region (e.g., 0.8 < r* < 1.3). This 
causes numerical insensitivity. The Gibbs-Duhem relation (OP/OI~ =p) ,  on 
the other hand, goes through the chemical potential. According to Lee 
1992 [12],  /t derives major contributions from the short-range values 
(0 < r < a) of y(r) and B(r). We have shown that the advantage of the 
dlt-dP criterion, despite the numerical noises, ensures correct asymptotic 
values r ~ 0 of the bridge function. We can now answer question b, that 
the thermodynamic properties are accurately reproduced, in the affirmative. 
As to question a, that B(r) is more accurate, we have shown that the ther- 
modynamic property consistencies can yield extremely accurate bridge 
functions, if the right closure form and the right consistency conditions are 
used. At least for the cases studied, this conclusion is confirmed. 
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